Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation
نویسندگان
چکیده
The evolutionarily conserved soluble adenylyl cyclase (sAC, adcy10) was recently identified as a unique source of cAMP in the cytoplasm and the nucleus. Its activity is regulated by bicarbonate and fine-tuned by calcium. As such, and in conjunction with carbonic anhydrase (CA), sAC constitutes an HCO(-) 3/CO(-) 2/pH sensor. In both alpha-intercalated cells of the collecting duct and the clear cells of the epididymis, sAC is expressed at significant level and involved in pH homeostasis via apical recruitment of vacuolar H(+)-ATPase (VHA) in a PKA-dependent manner. In addition to maintenance of pH homeostasis, sAC is also involved in metabolic regulation such as coupling of Krebs cycle to oxidative phosphorylation via bicarbonate/CO2 sensing. Additionally, sAC also regulates CFTR channel and plays an important role in regulation of barrier function and apoptosis. These observations suggest that sAC, via bicarbonate-sensing, plays an important role in maintaining homeostatic status of cells against fluctuations in their microenvironment.
منابع مشابه
pH sensing via bicarbonate-regulated “soluble” adenylyl cyclase (sAC)
Soluble adenylyl cyclase (sAC) is a source of the second messenger cyclic adenosine 3', 5' monophosphate (cAMP). sAC is directly regulated by bicarbonate (HCO(-) 3) ions. In living cells, HCO(-) 3 ions are in nearly instantaneous equilibrium with carbon dioxide (CO2) and pH due to the ubiquitous presence of carbonic anhydrases. Numerous biological processes are regulated by CO2, HCO(-) 3, and/o...
متن کاملSoluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor.
Spermatozoa undergo a poorly understood activation process induced by bicarbonate and mediated by cyclic adenosine 3',5'-monophosphate (cAMP). It has been assumed that bicarbonate mediates its effects through changes in intracellular pH or membrane potential; however, we demonstrate here that bicarbonate directly stimulates mammalian soluble adenylyl cyclase (sAC) activity in vivo and in vitro ...
متن کاملMetabolic Communication between Astrocytes and Neurons via Bicarbonate-Responsive Soluble Adenylyl Cyclase
Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO₃⁻) sensor, s...
متن کاملPhysiological Sensing of Carbon Dioxide/Bicarbonate/pH via Cyclic Nucleotide Signaling
Carbon dioxide (CO(2)) is produced by living organisms as a byproduct of metabolism. In physiological systems, CO(2) is unequivocally linked with bicarbonate (HCO(3)(-)) and pH via a ubiquitous family of carbonic anhydrases, and numerous biological processes are dependent upon a mechanism for sensing the level of CO(2), HCO(3), and/or pH. The discovery that soluble adenylyl cyclase (sAC) is dir...
متن کاملThe metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein
cAMP signaling pathways can both stimulate and inhibit the development of cancer; however, the sources of cAMP important for tumorigenesis remain poorly understood. Soluble adenylyl cyclase (sAC) is a non-canonical, evolutionarily conserved, nutrient- and pH-sensing source of cAMP. sAC has been implicated in the metastatic potential of certain cancers, and it is differentially localized in huma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014